



Publié le
Lecture 13 mins
L’essai clinique au moment de l’analyse des résultats
L. MONNIER, C. COLETTE, Institut universitaire de recherche clinique, Montpellier.

Quelques années après le début de l’essai, il est indispensable de faire le point, d’analyser les résultats et de savoir si l’hypothèse de départ est confirmée. Le méthodologiquement correct du départ doit être retrouvé à l’arrivée. C’est cet aspect du problème que nous allons envisager.
Analyse des résultats en traitement actuel ou en intention de traiter Tout essai thérapeutique doit s’étaler sur une durée de temps suffisante (plusieurs mois et parfois plusieurs années) pour donner à un événement (accident cardiovasculaire) la possibilité de se produire. Si la durée du suivi est trop courte, le nombre d’événements qui se sera produit à la fin de l’étude sera trop faible et l’analyse des résultats sera impossible, sauf si on accepte une augmentation inconsidérée du nombre de sujets à inclure dans l’essai. Un essai trop long se traduit par un nombre de « perdus de vue » important ou par un nombre trop important de sujets qui sortent de l’essai pour des raisons diverses. Pour cette raison, la durée de l’essai thérapeutique ne doit être ni trop longue ni trop courte. Trois à 5 ans est une durée raisonnable, bien que l’on puisse faire plus long dans le suivi à distance après la fin de l’essai (DCCT, UKPDS par exemple) (1,2). Même si la durée est raisonnable, un certain nombre de sujets arrêteront le traitement en cours d’étude. Pour mieux comprendre les choses, supposons que N soit le nombre de sujets inclus dans l’un des deux groupes à comparer. À la fin de l’étude, au bout de quelques années, on s’aperçoit que le nombre de sujets qui sont venus en consultation ou qui ont réellement suivi le traitement n’est que de N’, avec N’ N. Il est préférable évidemment que N’ soit peu différent de N. Toutefois même si les deux nombres sont proches, sur quelle valeur doit-on faire l’analyse pour calculer par exemple le risque absolu dans ce groupe ? En d’autres termes, doit-on faire l’analyse sur n/N’ ou sur n/N, si n est le nombre d’événements qui ont été enregistrés dans ce groupe. Si on choisit n/N, on dit que l’analyse est faite en intention de traiter. Si on choisit n/N’, on dit que l’analyse est faite en traitement actuel. En général c’est la première option qui est choisie mais, dans tous les cas, il est préférable d’éviter les perdus de vue ou les manques d’observance. La correction de Kaplan Meier Elle est destinée à corriger les résultats de l’analyse en fonction du nombre de perdus de vue et de décès qui accompagnent le déroulement de l’étude. Pour comprendre ce point, prenons un exemple simple. Dix sujets entrent dans un essai pour une durée de 4 mois et l’on veut calculer le pourcentage de survie. Un sujet meurt dans le 1 er mois de l’étude, un 2 e dans le 3 e mois et un 3 e dans le 4 e mois. Au bout de 4 mois, il y a donc 3 décès sur 10. Le pourcentage de survie apparent est donc de 7/10 = 70 %. Cette valeur n’est toutefois pas la valeur réelle car on doit tenir compte des perdus de vue (correction de Kaplan Meier). Supposons que, sur les 10 patients, il y ait un perdu de vue au 2 e mois. Le bilan s’établit de la manière suivante (figure 1) : - à la fin du 1 er mois, 1 décès, pas de perdu de vue, le taux de survie sur le 1 er mois est 9/10 soit 90 % ; - à la fin du 2 e mois : 1 décès, 1 perdu de vue mais on ne sait pas si ce dernier est décédé ou en vie. Le nombre de sujets restant n’est plus que 8, le taux de survie sur le 2 e mois est 8/8 = 1 et le taux de survie à la fin du 2 e mois est toujours égal à 90 % ; - si un sujet décède dans le 3 e mois, le taux de survie sur le 3 e mois sera 7/8 = 0,875 puisque le nombre de sujets restants est 8. À la fin du 3 e mois, le pourcentage réel de sujets qui survivent en tenant compte du sujet perdu de vue dans le 2 e mois est : 90 % x 0,875 soit 79 % au lieu de 80 % si on s’était basé sur 10 sujets et 2 décès ; - à la fin du 3 e mois, le nombre de sujets restant est égal à 7 et un sujet décède dans le 4 e mois, soit un taux de survie sur le 4 e mois égal à 6/7 = 0,857. À la fin du 4 e mois, le pourcentage global de survie sera donc égal à 90 % x 0,875 x 0,857 = 67,5 % au lieu de 70 %. Ce petit calcul est fait pour démontrer que la courbe de survie actuarielle réelle doit être corrigée par les perdus de vue et que le pourcentage obtenu est inférieur à celui qui aurait été obtenu sans la correction dite de Kaplan Meir. C’est cette correction qui est utilisée dans toutes les études de suivi de cohortes. Figure 1. Taux de survie et correction de Kaplan Meier. La survie au cours du mois considéré tient compte du nombre de décès et du nombre de perdus de vue. Le calcul de la survie à la fin de l’intervalle de temps considéré est donné en bas du tableau. Sa traduction en % est figurée par la courbe rouge. Conditions requises pour que le résultat de l'essai clinique soit considéré comme significatif Le but des essais thérapeutiques est de démontrer que le médicament à tester est supérieur au comparateur. Ce résultat est loin d’être acquis à l’avance et les mauvaises surprises sont possibles, même si l’essai thérapeutique a été conçu de manière convenable. L’évaluation du risque relatif en comparant le médicament à tester et le comparateur (l’autre médicament de référence ou le placebo) est normalement utilisée pour déterminer la supériorité d’un traitement donné. Comme indiqué plus haut, le risque relatif doit être affecté d’un intervalle de confiance à 95 % et sa valeur doit être comparée au risque 1 (c’est-à-dire au point de neutralité pour lequel l’essai thérapeutique ne serait favorable ni au médicament à tester ni au comparateur). Si le risque relatif est inférieur à 1, et si la limite supérieure de l’intervalle de confiance à 95 % ne mord pas sur la ligne de neutralité (RR = 1), on dit que l’essai thérapeutique est en faveur du médicament à tester (figure 2). Si le risque relatif est supérieur à 1 et si la limite inférieure de l’intervalle de confiance ne mord pas sur la ligne de neutralité, l’essai thérapeutique est en faveur du comparateur. Ce type de résultat est évidemment gênant pour les promoteurs de l’essai thérapeutique. Lorsque l’intervalle de confiance mord sur la ligne de neutralité, l’essai ne permet pas de conclure et il est impossible de savoir si le médicament à tester est supérieur ou non au comparateur. Le choix de l’événement donné est important. Dans tout essai thérapeutique, il convient au préalable de définir un ou des objectifs principaux ( primary endpoints) et des objectifs secondaires ( secondary endpoints). Les objectifs principaux sont souvent des cibles fortes : mortalité totale quelle que soit la cause, décès liés à un accident cardiovasculaire, complications cardiovasculaires non mortelles mais majeures, susceptibles d’entraîner un handicap physique. Les objectifs secondaires sont en général des pathologies ayant des conséquences moins fortes : par exemple, des complications cardiovasculaires n’entraînant pas de handicap majeur sur le long terme. Le choix des objectifs doit être défini à l’avance, les cibles fortes ayant toujours plus de valeur que les conséquences moyennes ou faibles. À titre d’exemple, la mortalité totale, quel qu’en soit la cause, est un objectif majeur car le recueil des données ne souffre d’aucune ambiguïté dans la mesure où malheureusement il obéit à une loi du tout ou rien. Figure 2. Conditions pour que le résultat de l’essai soit considéré comme significatif. L’effet du médicament testé sur l’événement considéré est significatif si l’intervalle de confiance à 95 % ne « mord » pas sur la ligne de neutralité. L’effet est favorable si le RR est 1 et défavorable s’il est > 1. Les pièges du risque relatif (RR) et de la réduction du risque relatif (RRR) La nécessité de calculer le nombre de sujets à traiter pour éviter un événement chez l’un d’eux. Deux études peuvent donner la même réduction du risque relatif sans pour autant avoir la même valeur. Prenons deux exemples simples : - une étude 1 est pratiquée sur 20 000 sujets avec un médicament hypolipidémiant à tester (A) et un placebo : 10 000 dans le groupe A et 10 000 dans le groupe placebo ; - une étude 2 est pratiquée sur 2 000 sujets avec un autre hypolipidémiant (B) contre un placebo (tableau 1). Dans les deux études 1 et 2, au bout de 5 ans on relève 333 accidents cardiovasculaires dans les groupes A et B et 500 dans les groupes placebo. Le calcul des risques absolus donne les résultats suivants : - dans l’étude 1, groupe A, 333/10 000, soit 3,33 % ; groupe placebo 500/10 000, soit 5 % ; - dans l’étude 2, groupe B, 333/1 000, soit 33 % ; groupe placebo 500/1 000, soit 50 %. Les risques relatifs dans les deux études sont les mêmes : 3,33/5 = 0,66 dans l’étude 1 et 33/50 = 0,66. La réduction des risques relatifs est la même : - 33 % en faveur des médicaments A et B par rapport au placebo. Une analyse superficielle des résultats pourrait amener à conclure que A et B sont identiques bien que l’on ait l’intuition que A et B sont différents. Pour trancher ce débat, il convient de calculer le nombre de sujets à traiter pour éviter un accident chez l’un d’entre eux. Le nombre de sujets à traiter (NTT) est donné par une formule simple : NTT = 100/différence des risques absolus entre le bras médicament à tester et le bras comparateur. Dans l’exemple présent : - dans l’étude 1, NTT = 100/ [5]-[3,33] = 60 sujets ; - dans l’étude 2, NTT = 100 / [50] – [33] = 6 sujets. Il apparaît d’emblée qu’il faut traiter 10 fois plus de sujets avec le médicament A qu’avec le médicament B pour éviter un événement chez l’un d’entre eux. Le médicament B est indiscutablement très supérieur au médicament A puisque beaucoup plus « rentable ». Nous avons, bien sûr, supposé dans cet exemple que les IC à 95 % ne « mordaient » pas sur la ligne de neutralité dans les deux études. Cela conduit à une remarque supplémentaire. En augmentant le nombre de sujets dans l’étude, on réduit l’intervalle de confiance à 95 % et on peut augmenter la significativité du résultat. Si les deux études 1 et 2 sont supposées toutes les deux significatives, il est probable que l’étude 1 (grand nombre de cas) sera plus significative que l’étude 2 (petit nombre de cas). Dans une optique de marketing, un laboratoire risque de vous présenter son médicament A comme meilleur que le médicament B du
Attention, pour des raisons réglementaires ce site est réservé aux professionnels de santé.
pour voir la suite, inscrivez-vous gratuitement.
Si vous êtes déjà inscrit,
connectez vous :
Si vous n'êtes pas encore inscrit au site,
inscrivez-vous gratuitement :
Articles sur le même thème
Pagination
- Page 1
- Page suivante